

ESG Signals® Supplementary Materials

Table of Contents

Overview	3
Themes Covered	3
Key Features	4
Market Segments & Use Cases	4
Data Access Method	4
Table 1: Static & Dynamic Nature of Indicators	5
ESGSignals® Data Field Descriptions	6
Table 2: Consolidated Table with All Indicators	6
Table 3: Individual Tables with Theme Specific Indicators	51
Table 3.1: Asset Information	51
Table 3.2: Water Stress	52
Table 3.3: Land Usage	53
Table 3.4: Fire	53
Table 3.5: Historical Hurricanes	54
Table 3.6 : Earthquakes	55
Table 3.7: Heat and Cold Wave	56
Table 3.8: WPAs and KBAs	60
Table 3.9: STAR	62
Table 3.10: IUCN Red List Species Distribution	62
Table 3.11: Coastal Inundation	65
Table 3.12: Riverine Inundation	78
Table 3.13: Futuristic Rainfall	83
Table 3.14: Standard Precipitation Index (SPI) - Drought Index	85
Table 3.15: Solar Potential	85
Table 3.16: Ecosystem Mapping	86
Table 3.17: ENCORE Mapping	87
Table 3.18: Futuristic Water Stress	96

Overview

ESGSignals® is the industry-leading geospatial analytics platform for providing asset-level, objective, verifiable and comparable environmental and climate physical risk data and metrics for companies. The physical assets are mapped back to its ownership, asset type, sector, country etc. making it possible to conduct; (i) risk profile comparisons for assets with similar attributes, (ii) company, industry, sector level risk evaluation, (iii) baselining and benchmarking, (iv) portfolio screening, monitoring and engagement and more.

While the standard coverage for ESGSignals® is many global public companies with a focus on the most polluting and physical asset-intensive sectors (Energy, Utilities, Materials, Industrials etc.), we also allow the users to 'Bring Your Own Assets' (BYOA) data in a pre-defined format (Latitude, Longitude info. of assets at a minimum) and extract a similar dataset for any public or private company that is not under our current coverage.

Themes Covered

- Land Usage & Land Cover
- Water Stress
- Wildfire Risk
- Heatwave & Coldwave Risk
- Coastal & Riverine Floods
- Hurricanes, Landslides
- Vegetation Indices (e.g. EVI)
- Emissions
- Overlap with Key Biodiversity Areas, World Protected Areas
- Red List Species distribution
- Ecosystem mapping for the assets
- Nature-related impact and dependency materiality mapping for the assets
- Ecosystem / biome specific environmental indicators (soil conditions, ocean water quality, ...) & more..

The indicators covered under above themes have different data frequencies depending on the thematic relevance, the type of indicator and the availability of input data sources. Table 1 below shows a high-level summary of the data frequencies by different themes.

RS Metrics is a TNFD (Task Force for Nature-Related Disclosures) Data Catalyst Member who works closely with TNFD in refining its framework.

Key Features

- Objective | verifiable | comparable | timely data
- Physical asset-level granularity with ownership mapping
- Natural capital and biodiversity offering that is closely aligned and evolving with TNFD
- Powered by GCP and Google Earth Engine (GEE)
- Brings together hundreds of open-source, premium, structured, unstructured (geospatial & other) data
- Comparable data across assets, companies, sectors, industries, countries etc.

Market Segments & Use Cases

- Asset Managers: Integration for fundamental, quantitative, and enhanced active investment strategies
- Corporates: Granular environmental sustainability assessment
- Rating Providers: Reference data for ESG ratings & scores
- ESG Ratings and Solutions Providers: Sustainability finance solutions, regulatory and reporting solutions for TNFD, TCFD, SFDR etc.
- Index Providers: Integration for ranked sustainable investment indices and custom benchmarks

Data Access Method

ESGSignals® data can be accessed via an API as (i) a single consolidated table with the key pair as location (asset/site) id and date and / or (ii) separate tables by indicator category which are much smaller in size making it even easier to query.

Table 2 provides the data field descriptions for the consolidated table.

Table 1: Static & Dynamic Nature of Indicators

Indicator / Indicator Group	Frequency	
Fire	Deile	
Earthquakes	Daily	
Standard Precipitation Index (SPI) - Drought Index	Monthly	
Water Stress		
Historical Hurricanes		
Key Biodiversity Areas (KBAs)		
World Protected Areas (WPAs)		
IUCN Red List Species Distribution	-Static-	
Species Threat Abatement & Restoration (STAR)	The numbers are repeated for these indicators across the full time range of an asset simply to	
ENCORE Mapping	represent all indicator data in one table	
Ecosystem Mapping		
Solar Potential		
Land Usage		
Coastal Inundation		
Riverine Inundation	Static with respect to the future year and RCP	
Heat and Cold Wave	scenario considered. The numbers are repeated for these indicators across the full time range of	
Futuristic Rainfall	an asset simply to represent all indicator data in one table.	
Futuristic Water Stress		

ESGSignals[®] Data Field Descriptions

Table 2: Consolidated Table with All Indicators

Data Field	Data Type	Description
Date	Date / datetime	Date relevant to the observation in mm/dd/yyyy format
4	Asset Information	
LocationID	String / varchar (255)	Unique location identifier
LocationName	String / varchar (255)	Name of the monitored location
LocationType	String / varchar (255)	Type of the monitored location
ParentCompany	String / varchar (255)	The parent company name for the corresponding location. When multiple parent companies are present, all parent companies are recorded separated by a '/'
Sector	String / varchar (255)	GICS sector classification of the parent company. When multiple parent companies are present, sectors corresponding to parent companies are recorded separated by a '/'. If some parent companies do not belong to the MSCI ACWI index, the sector value corresponding to that may be recorded as #NA
Industry	String / varchar (255)	Industry classification of the company
SubIndustry	String / varchar (255)	GICS Sub Industry classification of the company
Country	String / varchar (255)	Country name
Latitude*	Double / double	Asset Location Latitude
Longitude*	Double / double	Asset Location Longitude

Water Stress		
WaterStressValue2020	Double / double	Ratio of total water withdrawals relative to the annual available renewable surface water supplies of the nearest water stressed location. 0 - No Water Stress Null - No Data
WaterStressCategoryBusinessAsUsual	String / varchar (255)	WaterStressValue is categorized in intervals as: Extremely high (>80%), High (40-80%), Medium-high (20-40%), Low-medium (10-20%), Low (<10%), Arid and low water use, No data
ProximityToWaterStress	Double / double	The minimum distance in km to the nearest water basin (if there's any) from the midpoint of the location
WaterStressScore	Double / double	Values in between 0 and 100, created using Proximity to Water Stress and Water Stress Value. 0 – Least likely to be Vulnerable to Water Stressed Area 100 – Most likely to be Vulnerable to Water Stressed Area
Land Usage		
LandUsage	Double / double	Land usage area represented in square kilometers
Fire		
BrightnessOfFire	Integer / int(11)	Brightness temperature of pixels in Kelvin. Large brightness values for huge wildfires. Fires within 2000 km are only considered. 0 – No Fire Null – No Data

ProximityToWildfire	Integer / int(11)	The minimum distance in km to the nearest fire risk region (if there's any) from the mid-point of the location 0 – Nearby wildfire Null – No Data
FireRiskScore	Integer / int(11)	Values in between 0 and 100, created using Proximity to WildFire and Brightness of Fire. 0 – Least likely to be Vulnerable to WildFires 100 – Most likely to be Vulnerable to WildFires Null – No Data
	Hurricanes	
HistoricalHurricaneOccurrence250Km	Integer / int(11)	Number of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalMaxStormSpeed250Km	Integer / int(11)	Maximum storm speed of the Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalMeanStormSpeed250Km	Integer / int(11)	Mean storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalHurricaneOccurrence500Km	Integer / int(11)	Number of Hurricanes occurred within 2007 to 2017 (10 years) with a buffer zone of 500 km
HistoricalMaxStormSpeed500Km	Integer / int(11)	Maximum storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 500 km
HistoricalMeanStormSpeed500Km	Integer / int(11)	Mean storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 500 km
Earthquakes		
EarthquakeCount	Integer / int(11)	Number of earthquakes affected the specific asset in that specific date

LandslideCount	Integer / int(11)	Number of earthquakes that occurred due to a landslide on that day, which affected that asset.
MineCollapseCount	Integer / int(11)	Number of earthquakes that occurred due to a Mine Collapse on that day, which affected that asset.
MiningExplosionCount	Integer / int(11)	Number of earthquakes that occurred due to a Mining Explosion on that day, which affected that asset.
VolcanicEruptionCount	Integer / int(11)	Number of earthquakes that occurred due to a Volcanic Eruption on that day, which affected that asset.
MinMagnitude	Double / double	Minimum magnitude value of the earthquakes that affected the specific asset on the specific date.
		Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
	String / varchar (255)	Magnitude type corresponding to the minimum magnitude value.
MinMagnitudeType		Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
MaxMagnitude	Double / double	Maximum magnitude value of the earthquakes that affected the specific asset on the specific date.
		Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
	String / varchar (255)	Magnitude type corresponding to the maximum magnitude value.
MaxMagnitudeType		Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
MinDepth Double / double		Minimum depth value of the earthquakes that affected the specific asset on the specific date.
	Null – No events (if there is no earthquake occurrence for the specific location on the specific date)	

MaxDepth	Double / double	Minimum depth value of the earthquakes that affected the specific asset on the specific date. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
NearestEventDistance	Double / double	The distance to the earthquake which happened closest to the asset on that day. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
FurthestEventDistance	Double / double	The distance to the earthquake which happened farthest to the asset on that day. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
Heat & Cold Wave		
HeatwaveRiskScore2025RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2025 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2025RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2025 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2050RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2050 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data

HeatwaveRiskScore2050RCP85	Double / double	 Expected sensitivity of each asset to have heatwave days in 2050 under RCP 8.5 scenario 0 - Least likely to be Vulnerable to Heatwave 100 - Most likely to be Vulnerable to Heatwave Null - No Data
HeatwaveRiskScore2075RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2075 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2075RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2075 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2100RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2100 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2100RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2100 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data

ColdwaveRiskScore2025RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2025 under RCP 4.5 scenario 0 - Least likely to be Vulnerable to coldwave 100 - Most likely to be Vulnerable to coldwave Null - No Data
ColdwaveRiskScore2025RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2025 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2050RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2050 under RCP 4.5 scenario 0 - Least likely to be Vulnerable to coldwave 100 - Most likely to be Vulnerable to coldwave Null - No Data
ColdwaveRiskScore2050RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2050 under RCP 8.5 scenario 0 - Least likely to be Vulnerable to coldwave 100 - Most likely to be Vulnerable to coldwave Null - No Data
ColdwaveRiskScore2075RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2075 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data

ColdwaveRiskScore2075RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2075 under RCP 8.5 scenario 0 - Least likely to be Vulnerable to coldwave 100 - Most likely to be Vulnerable to coldwave Null - No Data
ColdwaveRiskScore2100RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2100 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2100RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2100 under RCP 8.5 scenario 0 - Least likely to be Vulnerable to coldwave 100 - Most likely to be Vulnerable to coldwave Null - No Data
	WPAs & KBAs	
ClosestKBA	String / varchar(255)	Closest world key biodiversity area
LocatedWithinKBA	Integer / int(11)	Whether the asset is located within a key biodiversity area 0 – The asset is not located within a key biodiversity area 1 – The asset is located within a key biodiversity area
ProximityToClosestKBA	Double / double	Distance in km to the closest key biodiversity area from the midpoint of the asset polygon
ClosestWPA	String / varchar(255)	Closest world protected area

		Whether the asset is located within a world protected area
LocatedWithinWPA	Integer / int(11)	0 – The asset is not located within a world protected area 1 – The asset is located within a world protected area
ProximityToClosestWPA	Double / double	Distance in km to the closest world protected area from the midpoint of the asset polygon
NumOfKBAsWithin1km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 1km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin1km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 1km from the midpoint of the asset polygon
NumOfWPAsWithin1km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 1km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin1km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 1km from the midpoint of the asset polygon
NumOfKBAsWithin10km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 10km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin10km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 10km from the midpoint of the asset polygon
NumOfWPAsWithin10km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 10km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin10km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 10km from the midpoint of the asset polygon
NumOfKBAsWithin50km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 50km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin50km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 50km from the midpoint of the asset polygon

NumOfWPAsWithin50km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 50km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin50km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 50km from the midpoint of the asset polygon
	STAR	
TotalThreatAbatementScore5km	Double / double	This represents the summed scores of the proportion of each species' habitat range present, weighted by the species' IUCN Red List status. 0 - 0.1 - Very Low 0.1 - 1 - Low 1 - 10 - Medium 10 - 100 - High 100 - 1000 - Very High
TotalRestorationScore5km	Double / double	This shows the potential contribution towards reduction of global species extinction risk through restoration actions in each Area of Interest. 0 - 0.1 – Very Low 0.1 - 1 – Low 1 - 10 – Medium 10 - 100 – High 100 - 1000 – Very High
ιυα	CN Red List Species	
TotalSpeciesCount1km	Integer / int(11)	Total number of Threatened Species that fall within a buffer radius of 1km
SpeciesCR1km	Integer / int(11)	Percentage of Critically Endangered Species that fall within a buffer radius of 1km
SpeciesEN1km	Integer / int(11)	Percentage of Endangered Species that fall within a buffer radius of 1km
SpeciesVU1km	Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 1km

SpeciesNT1km	Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 1km
SpeciesLC1km	Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 1km
SpeciesEX1km	Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 1km
SpeciesEW1km	Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 1km
SpeciesDD1km	Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 1km
SpeciesTypeCount1km	Integer / int(11)	Types of species categories that fall within a buffer radius of 1km
TotalSpeciesCount10km	Integer / int(11)	Total number of Threatened Species that fall within a buffer radius of 10km
SpeciesCR10km	Integer / int(11)	Percentage of Critically Endangered Species that fall within a buffer radius of 10km
SpeciesEN10km	Integer / int(11)	Percentage of Endangered Species that fall within a buffer radius of 10km
SpeciesVU10km	Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 10km
SpeciesNT10km	Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 10km
SpeciesLC10km	Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 10km
SpeciesEX10km	Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 10km
SpeciesEW10km	Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 10km
SpeciesDD10km	Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 10km

Integer / int(11) Integer / int(11) Integer / int(11) Integer / int(11)	Types of species categories that fall within a buffer radius of 10km Total number of Threatened Species that fall within a buffer radius of 50km Percentage of Critically Endangered Species that fall within a buffer radius of 50km Percentage of Endangered Species that fall within a buffer radius of 50km		
Integer / int(11)	fall within a buffer radius of 50km Percentage of Critically Endangered Species that fall within a buffer radius of 50km Percentage of Endangered Species that		
	Species that fall within a buffer radius of 50km Percentage of Endangered Species that		
Integer / int(11)			
Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 50km		
Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 50km		
Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 50km		
Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 50km		
Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 50km		
Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 50km		
Integer / int(11)	Types of species categories that fall within a buffer radius of 50km		
Coastal Inundation			
Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0317001343		
	ateger / int(11) ateger / int(11) ateger / int(11) ateger / int(11) ateger / int(11) ateger / int(11) ateger / int(11)		

CoastalInundation2030RCP45ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0678997040
CoastalInundation2030RCP45ReturnPeriod25Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.1238994598
CoastalInundation2050RCP45ReturnPeriod25Pe rcentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.3710556030
CoastalInundation2050RCP45ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.4315547943

CoastalInundation2050RCP45ReturnPeriod25Pe rcentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.6134300232
CoastalInundation2080RCP45ReturnPeriod25Pe rcentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.4908638000
CoastalInundation2080RCP45ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.6110639572
CoastalInundation2080RCP45ReturnPeriod25Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7842636108

CoastalInundation2030RCP45ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.2669372559
CoastalInundation2030RCP45ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3031368256
CoastalInundation2030RCP45ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3591375351
CoastalInundation2050RCP45ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7115926743

CoastalInundation2050RCP45ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7720918655
CoastalInundation2050RCP45ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.8573923111
CoastalInundation2080RCP45ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7348251343
CoastalInundation2080RCP45ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.8550262451

CoastalInundation2080RCP45ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0282258987
CoastalInundation2030RCP45ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5004377365
CoastalInundation2030RCP45ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5366382599
CoastalInundation2030RCP45ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5926380157

CoastalInundation2050RCP45ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9537525177
CoastalInundation2050RCP45ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0142526627
CoastalInundation2050RCP45ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0995521545
CoastalInundation2080RCP45ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9769859314

CoastalInundation2080RCP45ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0971860886
CoastalInundation2080RCP45ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.2703857422
CoastalInundation2030RCP85ReturnPeriod25Pe rcentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0340995789
CoastalInundation2030RCP85ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0721998215

CoastalInundation2030RCP85ReturnPeriod25Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.1275997162
CoastalInundation2050RCP85ReturnPeriod25Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.3915548325
CoastalInundation2050RCP85ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.4618549347
CoastalInundation2050RCP85ReturnPeriod25Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.6562309265

CoastalInundation2080RCP85ReturnPeriod25Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.5795640945
CoastalInundation2080RCP85ReturnPeriod25Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7242641449
CoastalInundation2080RCP85ReturnPeriod25Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9321632385
CoastalInundation2030RCP85ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.2693367004

CoastalInundation2030RCP85ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3074378967
CoastalInundation2030RCP85ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3628368378
CoastalInundation2050RCP85ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7320919037
CoastalInundation2050RCP85ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.8023920059

CoastalInundation2050RCP85ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9001922607
CoastalInundation2080RCP85ReturnPeriod50Pe rcentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.8235254288
CoastalInundation2080RCP85ReturnPeriod50Pe rcentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9682254791
CoastalInundation2080RCP85ReturnPeriod50Pe rcentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.1761255264

CoastalInundation2030RCP85ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5028381348
CoastalInundation2030RCP85ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5409374237
CoastalInundation2030RCP85ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5963382721
CoastalInundation2050RCP85ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9742527008

CoastalInundation2050RCP85ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0445528030
CoastalInundation2050RCP85ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.1423530579
CoastalInundation2080RCP85ReturnPeriod100P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0656862259
CoastalInundation2080RCP85ReturnPeriod100P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.2103862762

CoastalInundation2080RCP85ReturnPeriod100P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.4182853699
Ri	verine Inundation	
RiverineInundation2030RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2030RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2030RCP45ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32

RiverineInundation2050RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2050RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2050RCP45ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2080RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32

RiverineInundation2080RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2080RCP45ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2030RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2030RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32

RiverineInundation2030RCP85ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2050RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2050RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32
RiverineInundation2050RCP85ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32

RiverineInundation2080RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32	
RiverineInundation2080RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32	
RiverineInundation2080RCP85ReturnPeriod100	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32	
Futuristic Rainfall			
AnnualAccumilatedRainfall2030RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2030 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 957.1666870117188	

AnnualAccumilatedRainfall2030RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2030 and the RCP scenario 8.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 947.0833129882812
AnnualAccumilatedRainfall2050RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2050 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 961.1666870117188
AnnualAccumilatedRainfall2050RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2050 and the RCP scenario 8.5 0 – No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 952.3333129882812
AnnualAccumilatedRainfall2080RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2080 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum – 954.00

AnnualAccumilatedRainfall2080RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2080 and the RCP scenario 8.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum – 966.00
	SPI	
SPI	Double / double	Monthly SPI (Drought Index) values based on precipitation deviations.
	String / varchar (255)	Drought categories based on monthly SPI values.
Category		SPI <= -2:Exceptional Drought -1.9 <= SPI <= -1.6 :Extreme Drought -1.6 < SPI <= -1.3 :Severe Drought -1.3 < SPI <= -0.8 :Moderate Drought -0.8 < SPI <= -0.5 :Abnormally Dry' -0.5 < SPI <= 0.7 :Abnormally Wet 0.7 < SPI <= 1.2 :Moderate Wet' 1.2 < SPI <= 1.5 :Severe Wet 1.5 < SPI <2 :Extreme Wet SPI >= 2 :Exceptional Wet
	Solar Potential	
SolarPotential	Double / double	Photovoltaic power potential (PVOUT) in [kWh/kWp] Null – No Data
Ecosystem Mapping		
Land	Integer / int (11)	 Whether Land is a primary or secondary ecosystem of the given asset. 0 - Land is not a primary or secondary ecosystem 1 - Land is a primary ecosystem 2 - Land is a secondary ecosystem

Marine	Integer / int (11)	 Whether the Ocean is a primary or secondary ecosystem of the given asset. 0 - Ocean is not a primary or secondary ecosystem 1 - Ocean is a primary ecosystem 2 - Ocean is a secondary ecosystem 	
Freshwater	Integer / int(11)	 Whether the Freshwater is a primary or secondary ecosystem of the given asset. 0 - Freshwater is not a primary or secondary ecosystem 1 - Freshwater is a primary ecosystem 2 - Freshwater is a secondary ecosystem 	
Subterranean	Integer / int(11)	Whether the Subterranean is a primary ecosystem of the given asset. 0 –Subterranean is not a primary ecosystem 1 –Subterranean is a primary ecosystem	
BiomeLand	String / varchar(255)	Name of the land biome that the asset intersects with.	
BiomeMarine	String / varchar(255)	Name of the marine biome that the asset intersects with.	
BiomeFreshwater	String / varchar(255)	Name of the freshwater biome that the asset intersects with.	
BiomeSubterranean	String / varchar(255)	Name of the subterranean biome that the asset intersects with.	
ENCORE Based Impact ar	nd Dependency Mater	iality for Each Asset	
EconomicActivity	String / varchar(255)	The level at which the links with the environment are assessed.	
Pressure Materialities			
Disturbances	String / varchar(255)	The potential pressure on economic activities produce noise or light pollution that has potential to harm organisms. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data	

AreaOfFreshwaterUse	String / varchar(255)	The potential pressure including hydrological changes, freshwater geomorphology and fluvial processes on the freshwater area that is used for economic activity. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EmissionsOfGHG	String / varchar(255)	The potential pressure on GreenHouse Gas Emissions. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
AreaOfSeabedUse	String / varchar(255)	The potential pressure on seabed areas of aquaculture, seabed mining etc. by type. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EmissionsOfNonGHGAirPollutants	String / varchar(255)	The potential pressure on economic activities emit non GHG air pollutants including the volume of PM2.5, PM10, VOCs, NOx, SO2, CO, etc. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The potential pressure on economic activities extract biotic resources including fish and timber.
OtherBioticResourceExtraction	String /	VH – Very high impact H – High impact
	varchar(255)	M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential pressure on economic
		activities extract abiotic resources
		including volume of mineral extracted.
	String /	VH – Very high impact
OtherAbioticResourceExtraction	String / varchar(255)	H – High impact
		M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable ND – No Data
		The potential pressure on economic
	String / varchar(255)	activities emit toxic pollutants that can
		directly harm organisms and the
		environment.
		VH – Very high impact
EmissionsOfToxicSoilAndWaterPollutants		H – High impact
		M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable ND – No Data
		The potential pressure on economic
		activities emit nutrient pollutants that can
		lead to eutrophication including volume
EmissionsOfNutrientSoilAndWaterPollutants		discharged to the receiving water body of
		nutrients.
	String /	VH – Very high impact
	varchar(255)	H – High impact
		M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data

GenerationAndReleaseOfSolidWaste	String / varchar(255)	The potential pressure on economic activities generate and release solid waste including volume of waste by classification. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
AreaOflandUse	String / varchar(255)	The potential pressure on economic activities use land area including area of agriculture by type, area of forest plantation by type, area of open cast mine by type. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
VolumeOfWaterUse	String / varchar(255)	The potential pressure on economic activities that use water including volume of groundwater consumed, volume of surface water consumed. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
IntroductionOfInvasiveSpecies	String / varchar(255)	The potential pressure on economic activities directly introduced non-native invasive species into areas of operation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

Dependency Materialities		
OtherProvisioningServicesAnimalBasedEnergy	String / varchar(255)	The potential importance of animal-based energy. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
BiomassProvisioning	String / varchar(255)	The potential importance of biomass provisioning. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
SolidWasteRemediation	String / varchar(255)	The potential importance of solid waste remediation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
SoilAndSedimentRetention	String / varchar(255)	The potential importance of soil and sediment retention. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
WaterPurification	String / varchar(255)	The potential importance of water purification. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The potential importance of soil quality
		regulation.
		VH – Very high impact
SoilQualityRegulation	String /	H – High impact
	varchar(255)	M – Medium impact L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of other
		regulating and maintenance service
		dilution by atmosphere and ecosystems.
		VH – Very high impact
OtherRegulatingAndMaintenanceServiceDilutio	String /	H – High impact
nByAtmosphereAndEcosystems	varchar(255)	M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of biological
		control.
		VH – Very high impact
	String / varchar(255)	H – High impact
BiologicalControl		M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of air filtration.
		VH – Very high impact
		H – High impact
AirFiltration	String /	M – Medium impact
	varchar(255)	L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of flood control.
		VH – Very high impact
		H – High impact
FloodControl	String /	M – Medium impact
FloodControl	varchar(255)	L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data

		The potential importance of genetic material.
GeneticMaterial	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
GlobalClimateRegulation	String / varchar(255)	The potential importance of global climate regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of water supply.
WaterSupply	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of maintaining nursery habitats.
NurseryPopulationAndHabitatMaintenance	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of noise attenuation.
NoiseAttenuation	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The notantial importance of other
OtherRegulatingAndMaintenanceServiceMediat	String /	The potential importance of other regulating and maintenance service mediation of sensory impacts other than noise. VH – Very high impact
ionOfSensoryImpactsOtherThanNoise	varchar(255)	H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
LocalMicroAndMesoClimateRegulation	String / varchar(255)	The potential importance of local micro and meso climate regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
Pollination	String / varchar(255)	The potential importance of pollination. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
StormMitigation	String / varchar(255)	The potential importance of storm mitigation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
WaterFlowRegulation	String / varchar(255)	The potential importance of water flow regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

RainfallPatternRegulation	String / varchar(255)	The potential importance of rainfall pattern regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
RecreationRelatedServices	String / varchar(255)	The potential importance of recreation related services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
VisualAmenityServices	String / varchar(255)	The potential importance of visual amenity services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EducationScientificAndResearchServices	String / varchar(255)	The potential importance of education, scientific and research services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
SpiritualArtisticAndSymbolicServices	String / varchar(255)	The potential importance of spiritual artistic and symbolic services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

Futuristic Water Stress		
WaterStressValue2030RCP70	Double / double	Water stress value for 2030 (2015-2045) and the RCP scenario 7.0 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP70	Double / double	Water stress Score for 2030 (2015-2045) and the RCP scenario 7.0 0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP70	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 7.0, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2030RCP26	Double / double	Water stress value for 2030 (2015-2045) and the RCP scenario 2.6 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP26	Double / double	Water stress score for 2030 (2015-2045) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP26	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 2.6, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

WaterStressValue2030RCP85	Double / double	Water stress value for 2030 (2015-2045) and the RCP scenario 8.5 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP85	Double / double	Water stress score for 2030 (2015-2045) and the RCP scenario 8.5 0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP85	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 8.5, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2050RCP70	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 7.0 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2050RCP70	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 7.0 0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP70	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 7.0, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

WaterStressValue2050RCP26	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 2.6 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2050RCP26	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP26	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 2.6, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2050RCP85	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 8.5 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2050RCP85	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 8.5 0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP85	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 8.5, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

WaterStressValue2080RCP70	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 7.0 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2080RCP70	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 7.0 0 - Low water stress 5 - High water stress
WaterStressCategory2080RCP70	String / varchar (255)	Water stress categories for 2080 (2065-2095) and the RCP scenario 7.0, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2080RCP26	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 2.6 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2080RCP26	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
WaterStressCategory2080RCP26	String / varchar (255)	Water stress categories for 2080 (2065-2095) and the RCP scenario 2.6, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

WaterStressValue2080RCP85	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 8.5 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2080RCP85	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 8.5 0 - Low water stress 5 - High water stress
WaterStressCategory2080RCP85	String / varchar (255)	Water stress categories for 2080 (2065-2095) and the RCP scenario 8.5, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

*Availability of these fields depend on the plan you subscribe to.

Table 3: Individual Tables with Theme Specific Indicators

Table 3.1: Asset Information

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
LocationName	String / varchar (255)	Name of the monitored location
LocationType	String / varchar (255)	Type of the monitored location

ParentCompany	String / varchar (255)	The parent company name for the corresponding location. When multiple parent companies are present, all parent companies are recorded separated by a '/'
Sector	String / varchar (255)	GICS sector classification of the parent company. When multiple parent companies are present, sectors corresponding to parent companies are recorded separated by a '/'. If some parent companies do not belong to the MSCI ACWI index, the sector value corresponding to that may be recorded as #NA
Industry	String / varchar (255)	Industry classification of the company
SubIndustry	String / varchar (255)	GICS sub-industry classification of the company
Country	String / varchar (255)	Country name
Latitude*	Double / double	Asset Location Latitude
Longitude*	Double / double	Asset Location Longitude

*Availability of these fields depend on the plan you subscribe to.

Table 3.2: Water Stress

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
WaterStressValue2020	Double / double	Ratio of total water withdrawals relative to the annual available renewable surface water supplies of the nearest water stressed location. 0 - No Water Stress Null - No Data

WaterStressCategoryBusinessAsUsual	String / varchar (255)	WaterStressValue is categorized in intervals as: Extremely high (>80%), High (40-80%), Medium-high (20-40%), Low-medium (10-20%), Low (<10%), Arid and low water use, No data
ProximityToWaterStress	Double / double	The minimum distance in km to the nearest water basin (if there's any) from the midpoint of the location
WaterStressScore	Double / double	Values in between 0 and 100, created using Proximity to Water Stress and Water Stress Value. 0 – Least likely to be Vulnerable to Water Stressed Area 100 – Most likely to be Vulnerable to Water Stressed Area

Table 3.3: Land Usage

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
LandUsage	Double / double	Land usage area represented in square kilometers

Table 3.4: Fire

Data Field	Data Type	Description
Date	Date / datetime	Date relevant to the observation in mm/dd/yyyy format
LocationID	String / varchar (255)	Unique location identifier
BrightnessOfFire	Integer / int(11)	Brightness temperature of pixels in Kelvin. Large brightness values for huge wildfires. Fires within 2000 km are only considered. 0 – No Fire Null – No Data

ProximityToWildfire	Integer / int(11)	The minimum distance in km to the nearest fire risk region (if there's any) from the mid-point of the location 0 – Nearby wildfire Null – No Data
FireRiskScore	Integer / int(11)	Values in between 0 and 100, created using Proximity to WildFire and Brightness of Fire. 0 – Least likely to be Vulnerable to WildFires 100 – Most likely to be Vulnerable to WildFires Null – No Data

Table 3.5: Historical Hurricanes

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
HistoricalHurricaneOccurrence250Km	Integer / int(11)	Number of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalMaxStormSpeed250Km	Integer / int(11)	Maximum storm speed of the Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalMeanStormSpeed250Km	Integer / int(11)	Mean storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 250 km
HistoricalHurricaneOccurrence500Km	Integer / int(11)	Number of Hurricanes occurred within 2007 to 2017 (10 years) with a buffer zone of 500 km
HistoricalMaxStormSpeed500Km	Integer / int(11)	Maximum storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 500 km
HistoricalMeanStormSpeed500Km	Integer / int(11)	Mean storm speed of Hurricanes occurred within 2007 to 2017 (10 years), with a buffer zone of 500 km

Table 3.6 : Earthquakes

Data Field	Data Type	Description
Date	Date / datetime	Date relevant to the observation in mm/dd/yyyy format
LocationID	String / varchar (255)	Unique location identifier
EarthquakeCount	Integer / int(11)	Number of earthquakes affected the specific asset in that specific date
LandslideCount	Integer / int(11)	Number of earthquakes that occurred due to a landslide on that day, which affected that asset.
MineCollapseCount	Integer / int(11)	Number of earthquakes that occurred due to a Mine Collapse on that day, which affected that asset.
MiningExplosionCount	Integer / int(11)	Number of earthquakes that occurred due to a Mining Explosion on that day, which affected that asset.
VolcanicEruptionCount	Integer / int(11)	Number of earthquakes that occurred due to a Volcanic Eruption on that day, which affected that asset.
MinMagnitude		Minimum magnitude value of the earthquakes that affected the specific asset on the specific date.
	Double / double	Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
		Magnitude type corresponding to the minimum magnitude value.
MinMagnitudeType	String / varchar (255)	Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
MaxMagnitude	Double / double	Maximum magnitude value of the earthquakes that affected the specific asset on the specific date.
		Null – No events (if there is no earthquake occurrence for the specific location on the specific date)

MaxMagnitudeType	String / varchar (255)	Magnitude type corresponding to the maximum magnitude value. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
MinDepth	Double / double	Minimum depth value of the earthquakes that affected the specific asset on the specific date. (in km) Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
MaxDepth	Double / double	Minimum depth value of the earthquakes that affected the specific asset on the specific date. (in km) Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
NearestEventDistance	Double / double	The distance to the earthquake in km which happened closest to the asset on that day. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)
FurthestEventDistance	Double / double	The distance to the earthquake in km which happened farthest to the asset on that day. Null – No events (if there is no earthquake occurrence for the specific location on the specific date)

Table 3.7: Heat and Cold Wave

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier

HeatwaveRiskScore2025RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2025 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2025RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2025 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2050RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2050 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2050RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2050 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2075RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2075 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data

HeatwaveRiskScore2075RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2075 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2100RCP45	Double / double	Expected sensitivity of each asset to have heatwave days in 2100 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
HeatwaveRiskScore2100RCP85	Double / double	Expected sensitivity of each asset to have heatwave days in 2100 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to Heatwave 100 – Most likely to be Vulnerable to Heatwave Null – No Data
ColdwaveRiskScore2025RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2025 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2025RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2025 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data

ColdwaveRiskScore2050RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2050 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2050RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2050 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2075RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2075 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2075RCP85	Double / double	Expected sensitivity of each asset to have coldwave days in 2075 under RCP 8.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data
ColdwaveRiskScore2100RCP45	Double / double	Expected sensitivity of each asset to have coldwave days in 2100 under RCP 4.5 scenario 0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data

		Expected sensitivity of each asset to have coldwave days in 2100 under RCP 8.5 scenario
ColdwaveRiskScore2100RCP85	Double / double	0 – Least likely to be Vulnerable to coldwave 100 – Most likely to be Vulnerable to coldwave Null – No Data

Table 3.8: WPAs and KBAs

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
ClosestKBA	String / varchar(255)	Closest world key biodiversity area
LocatedWithinKBA	Integer / int(11)	Whether the asset is located within a key biodiversity area 0 – The asset is not located within a key biodiversity area 1 – The asset is located within a key biodiversity area
ProximityToClosestKBA	Double / double	Distance in km to the closest key biodiversity area from the midpoint of the asset polygon
ClosestWPA	String / varchar(255)	Closest world protected area
LocatedWithinWPA	Integer / int(11)	Whether the asset is located within a world protected area 0 – The asset is not located within a world protected area 1 – The asset is located within a world protected area
ProximityToClosestWPA	Double / double	Distance in km to the closest world protected area from the midpoint of the asset polygon
NumOfKBAsWithin1km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 1km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin1km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 1km from the midpoint of the asset polygon

NumOfWPAsWithin1km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 1km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin1km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 1km from the midpoint of the asset polygon
NumOfKBAsWithin10km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 10km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin10km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 10km from the midpoint of the asset polygon
NumOfWPAsWithin10km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 10km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin10km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 10km from the midpoint of the asset polygon
NumOfKBAsWithin50km	Integer / int(11)	Number of key biodiversity areas that fall within a buffer radius of 50km from the midpoint of the asset polygon
OverlappingAreaOfKBAsWithin50km	Double / double	Area captured by key biodiversity areas in square km, within a buffer radius of 50km from the midpoint of the asset polygon
NumOfWPAsWithin50km	Integer / int(11)	Number of world protected areas that fall within a buffer radius of 50km from the midpoint of the asset polygon
OverlappingAreaOfWPAsWithin50km	Double / double	Area captured by world protected areas in square km, within a buffer radius of 50km from the midpoint of the asset polygon

Table 3.9: STAR

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
TotalThreatAbatementScore5km	Double / double	This represents the summed scores of the proportion of each species' habitat range present, weighted by the species' IUCN Red List status. 0 - 0.1 - Very Low 0.1 - 1 - Low 1 - 10 - Medium 10 - 100 - High 100 - 1000 - Very High
TotalRestorationScore5km	Double / double	This shows the potential contribution towards reduction of global species extinction risk through restoration actions in each Area of Interest. 0 - 0.1 - Very Low 0.1 - 1 - Low 1 - 10 - Medium 10 - 100 - High 100 - 1000 - Very High

Table 3.10: IUCN Red List Species Distribution

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
TotalSpeciesCount1km	Integer / int(11)	Total number of Threatened Species that fall within a buffer radius of 1km
SpeciesCR1km	Integer / int(11)	Percentage of Critically Endangered Species that fall within a buffer radius of 1km
SpeciesEN1km	Integer / int(11)	Percentage of Endangered Species that fall within a buffer radius of 1km

SpeciesVU1km	Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 1km
SpeciesNT1km	Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 1km
SpeciesLC1km	Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 1km
SpeciesEX1km	Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 1km
SpeciesEW1km	Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 1km
SpeciesDD1km	Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 1km
SpeciesTypeCount1km	Integer / int(11)	Types of species categories that fall within a buffer radius of 1km
TotalSpeciesCount10km	Integer / int(11)	Total number of Threatened Species that fall within a buffer radius of 10km
SpeciesCR10km	Integer / int(11)	Percentage of Critically Endangered Species that fall within a buffer radius of 10km
SpeciesEN10km	Integer / int(11)	Percentage of Endangered Species that fall within a buffer radius of 10km
SpeciesVU10km	Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 10km
SpeciesNT10km	Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 10km
SpeciesLC10km	Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 10km
SpeciesEX10km	Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 10km
SpeciesEW10km	Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 10km

SpeciesDD10km	Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 10km
SpeciesTypeCount10km	Integer / int(11)	Types of species categories that fall within a buffer radius of 10km
TotalSpeciesCount50km	Integer / int(11)	Total number of Threatened Species that fall within a buffer radius of 50km
SpeciesCR50km	Integer / int(11)	Percentage of Critically Endangered Species that fall within a buffer radius of 50km
SpeciesEN50km	Integer / int(11)	Percentage of Endangered Species that fall within a buffer radius of 50km
SpeciesVU50km	Integer / int(11)	Percentage of Vulnerable Species that fall within a buffer radius of 50km
SpeciesNT50km	Integer / int(11)	Percentage of Near Threatened Species that fall within a buffer radius of 50km
SpeciesLC50km	Integer / int(11)	Percentage of Least Concern Species that fall within a buffer radius of 50km
SpeciesEX50km	Integer / int(11)	Percentage of Extinct Species that fall within a buffer radius of 50km
SpeciesEW50km	Integer / int(11)	Percentage of Extinct in the Wild Species that fall within a buffer radius of 50km
SpeciesDD50km	Integer / int(11)	Percentage of Data Deficient Species that fall within a buffer radius of 50km
SpeciesTypeCount50km	Integer / int(11)	Types of species categories that fall within a buffer radius of 50km

Table 3.11: Coastal Inundation

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
CoastalInundation2030RCP45ReturnPeriod25P ercentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0317001343
CoastalInundation2030RCP45ReturnPeriod25P ercentile50	Double / double	 50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0678997040
CoastalInundation2030RCP45ReturnPeriod25P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.1238994598
CoastalInundation2050RCP45ReturnPeriod25P ercentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.3710556030

CoastalInundation2050RCP45ReturnPeriod25P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.4315547943
CoastalInundation2050RCP45ReturnPeriod25P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.6134300232
CoastalInundation2080RCP45ReturnPeriod25P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.4908638000
CoastalInundation2080RCP45ReturnPeriod25P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.6110639572

CoastalInundation2080RCP45ReturnPeriod25P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7842636108
CoastalInundation2030RCP45ReturnPeriod50P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years . 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.2669372559
CoastalInundation2030RCP45ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3031368256
CoastalInundation2030RCP45ReturnPeriod50P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3591375351

CoastalInundation2050RCP45ReturnPeriod50P ercentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7115926743
CoastalInundation2050RCP45ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7720918655
CoastalInundation2050RCP45ReturnPeriod50P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.8573923111
CoastalInundation2080RCP45ReturnPeriod50P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7348251343

CoastalInundation2080RCP45ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.8550262451
CoastalInundation2080RCP45ReturnPeriod50P ercentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0282258987
CoastalInundation2030RCP45ReturnPeriod100 Percentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5004377365
CoastalInundation2030RCP45ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5366382599

CoastalInundation2030RCP45ReturnPeriod100 Percentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5926380157
CoastalInundation2050RCP45ReturnPeriod100 Percentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9537525177
CoastalInundation2050RCP45ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0142526627
CoastalInundation2050RCP45ReturnPeriod100 Percentile95	Double / double	 95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0995521545

CoastalInundation2080RCP45ReturnPeriod100 Percentile5	Double / double	 5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9769859314
CoastalInundation2080RCP45ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years. 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0971860886
CoastalInundation2080RCP45ReturnPeriod100 Percentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.2703857422
CoastalInundation2030RCP85ReturnPeriod25P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0340995789

CoastalInundation2030RCP85ReturnPeriod25P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.0721998215
CoastalInundation2030RCP85ReturnPeriod25P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.1275997162
CoastalInundation2050RCP85ReturnPeriod25P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.3915548325
CoastalInundation2050RCP85ReturnPeriod25P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.4618549347

CoastalInundation2050RCP85ReturnPeriod25P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.6562309265
CoastalInundation2080RCP85ReturnPeriod25P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.5795640945
CoastalInundation2080RCP85ReturnPeriod25P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.7242641449
CoastalInundation2080RCP85ReturnPeriod25P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9321632385

CoastalInundation2030RCP85ReturnPeriod50P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.2693367004
CoastalInundation2030RCP85ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3074378967
CoastalInundation2030RCP85ReturnPeriod50P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.3628368378
CoastalInundation2050RCP85ReturnPeriod50P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.7320919037

CoastalInundation2050RCP85ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.8023920059
CoastalInundation2050RCP85ReturnPeriod50P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9001922607
CoastalInundation2080RCP85ReturnPeriod50P ercentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.8235254288
CoastalInundation2080RCP85ReturnPeriod50P ercentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 11.9682254791

CoastalInundation2080RCP85ReturnPeriod50P ercentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.1761255264
CoastalInundation2030RCP85ReturnPeriod100 Percentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5028381348
CoastalInundation2030RCP85ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5409374237
CoastalInundation2030RCP85ReturnPeriod100 Percentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 8.5963382721

CoastalInundation2050RCP85ReturnPeriod100 Percentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 9.9742527008
CoastalInundation2050RCP85ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.0445528030
CoastalInundation2050RCP85ReturnPeriod100 Percentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 10.1423530579
CoastalInundation2080RCP85ReturnPeriod100 Percentile5	Double / double	5th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.0656862259

CoastalInundation2080RCP85ReturnPeriod100 Percentile50	Double / double	50th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.2103862762
CoastalInundation2080RCP85ReturnPeriod100 Percentile95	Double / double	95th percentile of the Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 12.4182853699

Table 3.12: Riverine Inundation

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
RiverineInundation2030RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32

RiverineInundation2030RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2030RCP45ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2050RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2050RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32

RiverineInundation2050RCP45ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2080RCP45ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2080RCP45ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2080RCP45ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 4.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum – 32

RiverineInundation2030RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2030RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2030RCP85ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2030 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2050RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2050RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32

RiverineInundation2050RCP85ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2050 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2080RCP85ReturnPeriod25	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 25 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
RiverineInundation2080RCP85ReturnPeriod50	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 50 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32
Riverinelnundation2080RCP85ReturnPeriod10 0	Double / double	Inundation depth in meters (m) for the year 2080 and the RCP scenario 8.5 when the flood return period is 100 years 0 - No Inundation Null – No Data Global Minimum and Maximum values in meters (m) are as follows. Global Minimum – 0 Global Maximum - 32

Table 3.13: Futuristic Rainfall

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
AnnualAccumilatedRainfall2030RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2030 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 957.1666870117188
AnnualAccumilatedRainfall2030RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2030 and the RCP scenario 8.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 947.0833129882812
AnnualAccumilatedRainfall2050RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2050 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 961.1666870117188

AnnualAccumilatedRainfall2050RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2050 and the RCP scenario 8.5 0 – No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum - 952.3333129882812
AnnualAccumilatedRainfall2080RCP45	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2080 and the RCP scenario 4.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum – 954.00
AnnualAccumilatedRainfall2080RCP85	Double / double	Annual Average Accumulated Rainfall in millimeters (mm) for the year 2080 and the RCP scenario 8.5 0 - No Rainfall Null – No Data Global Minimum and Maximum values in millimeters (mm) are as follows. Global Minimum – 0 Global Maximum – 966.00

Table 3.14: Standard Precipitation Index (SPI) - Drought Index

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
Date	Date / datetime	Date relevant to the observation in yyyy/mm format.
SPI	Double / double	Monthly SPI (Drought Index) values based on precipitation deviations.
Category	String / varchar (255)	Drought categories based on monthly SPI values. SPI <= -2 :Exceptional Drought -1.9 <= SPI <= -1.6 :Extreme Drought -1.6 < SPI <= -1.3 :Severe Drought -1.3 < SPI <= -0.8 :Moderate Drought -0.8 < SPI <= -0.5 :Abnormally Dry' -0.5 < SPI <= 0.5 :Normal 0.5 < SPI <= 0.7 :Abnormally Wet 0.7 < SPI <= 1.2 :Moderate Wet' 1.2 < SPI <= 1.5 :Severe Wet 1.5 < SPI < 2 :Extreme Wet SPI >= 2 :Exceptional Wet

Table 3.15: Solar Potential

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
SolarPotential	Double / double	Photovoltaic power potential (PVOUT) in [kWh/kWp]

Table 3.16: Ecosystem Mapping

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
Land	Integer / int(11)	 Whether Land is a primary or secondary ecosystem of the given asset. 0 – Land is not a primary or secondary ecosystem 1 – Land is a primary ecosystem 2 – Land is a secondary ecosystem
Marine	Integer / int(11)	 Whether the Ocean is a primary or secondary ecosystem of the given asset. 0 - Ocean is not a primary or secondary ecosystem 1 - Ocean is a primary ecosystem 2 - Ocean is a secondary ecosystem
Freshwater	Integer / int(11)	Whether the Freshwater is a primary or secondary ecosystem of the given asset. 0 – Freshwater is not a primary or secondary ecosystem 1 – Freshwater is a primary ecosystem 2 – Freshwater is a secondary ecosystem
Subterranean	Integer / int(11)	Whether the Subterranean is a primary ecosystem of the given asset. 0 –Subterranean is not a primary ecosystem 1 –Subterranean is a primary ecosystem
BiomeLand	String / varchar(255)	Name of the land biome that the asset intersects with.
BiomeMarine	String / varchar(255)	Name of the marine biome that the asset intersects with.
BiomeFreshwater	String / varchar(255)	Name of the freshwater biome that the asset intersects with.
BiomeSubterranean	String / varchar(255)	Name of the subterranean biome that the asset intersects with.

Table 3.17: ENCORE Mapping

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
SubIndustry	String / varchar (255)	GICS Sub Industry classification of the company
EconomicActivity	String / varchar(255)	The level at which the links with the environment are assessed.
P	ressure Materialities	
Disturbances	String / varchar(255)	The potential pressure on economic activities produce noise or light pollution that has potential to harm organisms. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
AreaOfFreshwaterUse	String / varchar(255)	The potential pressure including hydrological changes, freshwater geomorphology and fluvial processes on the freshwater area that is used for economic activity. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EmissionsOfGHG	String / varchar(255)	The potential pressure on GreenHouse Gas Emissions. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

AreaOfSeabedUse	String / varchar(255)	The potential pressure on seabed areas of aquaculture, seabed mining etc. by type. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EmissionsOfNonGHGAirPollutants	String / varchar(255)	The potential pressure on economic activities emit non GHG air pollutants including the volume of PM2.5, PM10, VOCs, NOx, SO2, CO, etc. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
OtherBioticResourceExtraction	String / varchar(255)	The potential pressure on economic activities extract biotic resources including fish and timber. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
OtherAbioticResourceExtraction	String / varchar(255)	The potential pressure on economic activities extract abiotic resources including volume of mineral extracted. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

EmissionsOfToxicSoilAndWaterPollutants	String / varchar(255)	The potential pressure on economic activities emit toxic pollutants that can directly harm organisms and the environment. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EmissionsOfNutrientSoilAndWaterPollutants	String / varchar(255)	The potential pressure on economic activities emit nutrient pollutants that can lead to eutrophication including volume discharged to the receiving water body of nutrients. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
GenerationAndReleaseOfSolidWaste	String / varchar(255)	The potential pressure on economic activities generate and release solid waste including volume of waste by classification. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
AreaOflandUse	String / varchar(255)	The potential pressure on economic activities use land area including area of agriculture by type, area of forest plantation by type, area of open cast mine by type. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

VolumeOfWaterUse	String / varchar(255)	The potential pressure on economic activities that use water including volume of groundwater consumed, volume of surface water consumed. VH – Very high impact H – High impact M – Medium impact L – Low impact
		VL – Very low impact Null – Not Applicable ND – No Data
IntroductionOfInvasiveSpecies	String / varchar(255)	The potential pressure on economic activities directly introduced non-native invasive species into areas of operation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
De	pendency Materialities	
OtherProvisioningServicesAnimalBasedEnergy	String / varchar(255)	The potential importance of animal-based energy. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
BiomassProvisioning	String / varchar(255)	The potential importance of biomass provisioning. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The potential importance of solid waste remediation.
SolidWasteRemediation	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable
		ND – No Data The potential importance of soil and sediment retention.
SoilAndSedimentRetention	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of water purification.
WaterPurification	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of soil quality regulation.
SoilQualityRegulation	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
		The potential importance of other regulating and maintenance service dilution by atmosphere and ecosystems.
OtherRegulatingAndMaintenanceServiceDilution ByAtmosphereAndEcosystems	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The potential importance of biological control.
BiologicalControl	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable
		ND – No Data The potential importance of air filtration.
AirFiltration	String / varchar(255)	VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
FloodControl	String / varchar(255)	The potential importance of flood control. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
GeneticMaterial	String / varchar(255)	The potential importance of genetic material. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
GlobalClimateRegulation	String / varchar(255)	The potential importance of global climate regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The second state to second state of the second
WaterSupply	String / varchar(255)	The potential importance of water supply. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
NurseryPopulationAndHabitatMaintenance	String / varchar(255)	The potential importance of maintaining nursery habitats. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
NoiseAttenuation	String / varchar(255)	The potential importance of noise attenuation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
OtherRegulatingAndMaintenanceServiceMediati onOfSensoryImpactsOtherThanNoise	String / varchar(255)	The potential importance of other regulating and maintenance service mediation of sensory impacts other than noise. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
LocalMicroAndMesoClimateRegulation	String / varchar(255)	 The potential importance of local micro and meso climate regulation. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

		The potential importance of relligation
		The potential importance of pollination.
		VH – Very high impact
		H – High impact
Pollination	String / varchar(255)	M – Medium impact
	(L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of storm
		mitigation.
		VH – Very high impact
StormMitigation	String / varchar(255)	H – High impact
Storminigation	Stillig / Valchar(200)	M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of water flow
		regulation.
		VH – Very high impact
Water Eleve Daniel attain		H – High impact
WaterFlowRegulation	String / varchar(255)	M – Medium impact
		L – Low impact VL – Very low impact
		Null – Not Applicable
		Ndi – Not Applicable ND – No Data
		The potential importance of rainfall pattern
		regulation.
		VH – Very high impact
		H – High impact
RainfallPatternRegulation	String / varchar(255)	M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data
		The potential importance of recreation
		The potential importance of recreation related services.
		VH – Very high impact
		H – High impact
RecreationRelatedServices	String / varchar(255)	M – Medium impact
		L – Low impact
		VL – Very low impact
		Null – Not Applicable
		ND – No Data

VisualAmenityServices	String / varchar(255)	The potential importance of visual amenity services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
EducationScientificAndResearchServices	String / varchar(255)	The potential importance of education, scientific and research services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data
SpiritualArtisticAndSymbolicServices	String / varchar(255)	The potential importance of spiritual artistic and symbolic services. VH – Very high impact H – High impact M – Medium impact L – Low impact VL – Very low impact Null – Not Applicable ND – No Data

ENCORE: Exploring Natural Capital Opportunities, Risks and Exposure. [On-line], [June 2022], Cambridge, UK: the Natural Capital Finance Alliance. DOI: https://doi.org/10.34892/dz3x-y059

Table 3.18: Futuristic Water Stress

Data Field	Data Type	Description
LocationID	String / varchar (255)	Unique location identifier
WaterStressValue2030RCP70	Double / double	Water stress value for 2030 (2015-2045) and the RCP scenario 7.0 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP70	Double / double	Water stress Score for 2030 (2015-2045) and the RCP scenario 7.0 0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP70	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 7.0, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2030RCP26	Double / double	Water stress value for 2030 (2015-2045) and the RCP scenario 2.6 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP26	Double / double	Water stress score for 2030 (2015-2045) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP26	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 2.6, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)

WaterStressValue2030RCP85		Water stress value for 2030 (2015-2045) and the RCP scenario 8.5
	Double / double	Global Minimum – 0 Global Maximum – 9999
		(A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2030RCP85	Double / double	Water stress score for 2030 (2015-2045) and the RCP scenario 8.5
		0 - Low water stress 5 - High water stress
WaterStressCategory2030RCP85	String / varchar (255)	Water stress categories for 2030 (2015-2045) and the RCP scenario 8.5,
		Arid and low water use Low (<10%)
		Low-medium (10-20%) Medium-high (20-40%)
		High (40-80%) Extremely high (>80%)
WaterStressValue2050RCP70	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 7.0
		Global Minimum – 0 Global Maximum – 9999
		(A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2050RCP70	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 7.0
		0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP70	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 7.0,
		Arid and low water use Low (<10%)
		Low-medium (10-20%) Medium-high (20-40%)
		High (40-80%) Extremely high (>80%)
WaterStressValue2050RCP26	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 2.6
		Global Minimum – 0 Global Maximum – 9999
		(A raw value of 9999 indicates a severe water scarcity in a sub-basin)

WaterStressScore2050RCP26	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP26	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 2.6, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2050RCP85	Double / double	Water stress value for 2050 (2035-2065) and the RCP scenario 8.5 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2050RCP85	Double / double	Water stress score for 2050 (2035-2065) and the RCP scenario 8.5 0 - Low water stress 5 - High water stress
WaterStressCategory2050RCP85	String / varchar (255)	Water stress categories for 2050 (2035-2065) and the RCP scenario 8.5, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2080RCP70	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 7.0 Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)

WaterStressScore2080RCP70	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 7.0 0 - Low water stress
		5 - High water stress Water stress categories for 2080 (2065-2095) and the RCP scenario 7.0,
WaterStressCategory2080RCP70	String / varchar (255)	Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2080RCP26	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 2.6
		Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)
WaterStressScore2080RCP26	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 2.6 0 - Low water stress 5 - High water stress
		Water stress categories for 2080 (2065-2095) and the RCP scenario 2.6,
WaterStressCategory2080RCP26	String / varchar (255)	Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)
WaterStressValue2080RCP85	Double / double	Water stress value for 2080 (2065-2095) and the RCP scenario 8.5
		Global Minimum – 0 Global Maximum – 9999 (A raw value of 9999 indicates a severe water scarcity in a sub-basin)

WaterStressScore2080RCP85	Double / double	Water stress score for 2080 (2065-2095) and the RCP scenario 8.5 0 - Low water stress 5 - High water stress
WaterStressCategory2080RCP85	String / varchar (255)	Water stress categories for 2080 (2065-2095) and the RCP scenario 8.5, Arid and low water use Low (<10%) Low-medium (10-20%) Medium-high (20-40%) High (40-80%) Extremely high (>80%)